
Modules
Modules may be used to share type definitions, data (parameters and variables), and procedures.

Next slide

Modules

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld001.htm [4/12/2000 3:48:47 PM]

The Form of a Module
module module name

type and data declarations

contains

procedures

end module module name

The procedures in a module are module procedures. They may contain internal procedures.

Learn more about module procedures.

Previous slide Next slide

form

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld002.htm [4/12/2000 3:48:48 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/modproc.html

The use Statement

USE module name

The use statement may appear in a main program, an extenal, internal, or module procedure, or another
module.

Very roughly, the effect of using this statement is the same as placing in the program unit all of the type
definitions, declarations, and procedures. However, the values of variables declared are shared among all
the programs using the module, so changing a value in one program unit may affect the value of the same
variable used by another program unit.

Learn more about the use statement.

Previous slide Next slide

use

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld003.htm [4/12/2000 3:48:48 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/use.html

module m
 integer, parameter :: nr_of_unknowns = 100
 real a (nr_of_unknowns, nr_of_unknowns)
end module m

Previous slide Next slide

m

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld004.htm [4/12/2000 3:48:48 PM]

program p
 use m
 implicit none
 . . .
contains

subroutine s
 real, dimension (nr_of_unknowns) :: x
 a = 0
 . . .
end subroutine s

function f(x) result (f_result)
 real :: x, f_result
 f_result = x + a (1,1)
 . . .
end function f
 . . .

Previous slide Next slide

p

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld005.htm [4/12/2000 3:48:48 PM]

use only and Renaming

use m, only : nr_of_unknowns
use m, n => nr_of_unknowns
use m, only : n => nr_of_unknowns

Previous slide Next slide

only

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld006.htm [4/12/2000 3:48:48 PM]

The private Attribute and Statement
Things with the private attribute in a module are not included when the module is used. This means
they are known and can be used only inside the module. The private statement sets the default
attribute to private in the module (the default is public).

Learn more about accessibility.

Previous slide Next slide

private

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld007.htm [4/12/2000 3:48:48 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/access.html

The public Attribute and Statement
In a module, public is the default. A common scheme is to make private the default with the use of
the private statement and declare specifically the things to be public with the public attribute or
statement.

Previous slide Next slide

public

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld008.htm [4/12/2000 3:48:48 PM]

Compiling Modules
A module can be compiled in a file along with any other program units, but frequently modules are
placed in their own files. In this case, they can be compiled separately. It is important to ensure that the
correct version of each module is available and compiled during the compilation of any programs that
use For most compilers, a module being used must be compiled prior to compiling any program that
uses the module. Compiling a module typicall produces a .o or .obj file containing the object code for the
procedures in the module and files containing interface information for the procedures and information
about the types and data in the module. These files typically (but not always) have the suffix ".mod".

Previous slide Next slide

compiling1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld009.htm [4/12/2000 3:48:49 PM]

Suppose module1.f90 contains the module mod_1. With the compiler from Numercial Algorithms
Group (which is typical, but not universal), it can be compiled without creating an executable file with
the command:

f90 -c module1.f90

Then a program in file fff.f90 that uses the module mod_1 can be compiled with:

% f90 module1.o fff.f90

You can compile fff.f90 without mentioning module1, but you cannot produce an executable without it.

Previous slide Next slide

compiling2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld010.htm [4/12/2000 3:48:49 PM]

Case Study: Numerical Integration
Suppose we now want to integrate a function written as a function subprogram. In this case, we integrate
the function

f(x) = sqrt(x) sin (x)

First, put the function in a module.

Previous slide Next slide

integration

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld011.htm [4/12/2000 3:48:49 PM]

module function_mod

 implicit none

contains

function f (x) result (f_result)

 real :: f_result
 real, intent (in) :: x
 f_result = sin (x) * sqrt (x)

end function f

end module function_mod

Previous slide Next slide

fmod

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld012.htm [4/12/2000 3:48:49 PM]

It is also reasonable to put the integration routine in a module integral_mod. Then the program that
does the computation is:

program integrate

use function_mod
use integral_mod

implicit none

print *, integral (f, a=0.0, b=1.0, n=100)

end program integrate

Learn more about modules.

Previous slide Next slide

integrate

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld013.htm [4/12/2000 3:48:49 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/module.html

Generic Procedures
Fortran 77 has generic intrinsic procedures. It is possible to write your own generic procedures in Fortran
90. The easiest way to do it is to put them in a module.

module swap_module

 implicit none
 private

 interface swap
 module procedure swap_reals, swap_integers
 end interface
 public swap

Learn more about generic procedures.

Previous slide Next slide

generic1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld014.htm [4/12/2000 3:48:49 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/genproc.html

contains

subroutine swap_reals (a, b)
 real :: a, b, temp
 temp = a; a = b; b = temp
end subroutine swap_reals

subroutine swap_integers (a, b)
 integer :: a, b, temp
 temp = a; a = b; b = temp
end subroutine swap_integers

end module swap_module

Previous slide Next slide

generic2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld015.htm [4/12/2000 3:48:49 PM]

program test_swap

 use swap_module
 implicit none

 real :: x = 1.1, y = 2.2
 integer :: i = 1, j = 2

 call swap (x, y)
 print *, x, y

 call swap (i, j)
 print *, i, j

end program test_swap

Previous slide Next slide

testswap

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld016.htm [4/12/2000 3:48:50 PM]

External Generic Procedures
If the subroutines swap_reals and swap_integers are external subroutines, there must be an
interface block in any program that calls them generically as swap.

subroutine swap_reals (a, b)
 real :: a, b, temp
 temp = a; a = b; b = temp
end subroutine swap_reals

subroutine swap_integers (a, b)
 integer :: a, b, temp
 temp = a; a = b; b = temp
end subroutine swap_integers

Previous slide Next slide

external

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld017.htm [4/12/2000 3:48:50 PM]

program test_swap

 implicit none

 interface swap
 subroutine swap_integers (a, b)
 integer a, b
 end subroutine swap_integers
 subroutine swap_reals (a, b)
 real a, b
 end subroutine swap_reals
 end interface
 . . .

end program test_swap

Previous slide Next slide

testextswap

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld018.htm [4/12/2000 3:48:50 PM]

Extending Assignment

module int_logical

 implicit none
 private

 interface assignment (=)
 module procedure integer_gets_logical
 end interface
 public assignment (=)

contains

Learn more about exting assignment.

Previous slide Next slide

assignment1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld019.htm [4/12/2000 3:48:50 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/extassign.html

subroutine integer_gets_logical (i, l)

 integer, intent (out) :: i
 logical, intent (in) :: l

 i = 0; if (l) i = 1

end subroutine integer_gets_logical

end module int_logical

Previous slide Next slide

assignment2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld020.htm [4/12/2000 3:48:50 PM]

program test_int_logical

 use int_logical
 implicit none
 integer :: i

 i = .false.
 print *, i
 i = (5 < 7) .and. (sin (.3) < 1.0)
 print *, i

end program test_int_logical

Previous slide Next slide

testintlogical

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld021.htm [4/12/2000 3:48:50 PM]

Exercise
Extend assignment to assign a character string of all digits to an integer. Use the function
int_char discussed in the ``Character Data'' section.

1.

Previous slide Next slide

ex1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld022.htm [4/12/2000 3:48:50 PM]

Extending Operators

module logical_plus

 implicit none
 private

 interface operator (+)
 module procedure log_plus_log
 end interface
 public operator (+)

contains

Previous slide Next slide

operators1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld023.htm [4/12/2000 3:48:51 PM]

function log_plus_log (x, y) &
 result (log_plus_log_result)

 logical :: log_plus_log_result
 logical, intent (in) :: x, y

 log_plus_log_result = x .or. y

end function log_plus_log

end module logical_plus

Previous slide Next slide

operators2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld024.htm [4/12/2000 3:48:51 PM]

program test_logical_plus

 use logical_plus
 implicit none

 print *, .false. + .false.
 print *, .true. + .true.
 print *, (2.2 > 5.5) + (3.3 > 1.1)

end program test_logical_plus

Learn more about exting operators.

Previous slide Next slide

testlogicalplus

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld025.htm [4/12/2000 3:48:51 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/extop.html

Defining New Operators
Defining a new operator is similar to extending an existing one; its name is used in an interface statement
and the function, which must have one intent(in) argument is named in a module procedure
statement.

interface operator (.prime.)
 module procedure prime_function
end interface
public operator (.prime.)

Previous slide Next slide

newoperators1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld026.htm [4/12/2000 3:48:51 PM]

This operator could now be used just like any built-in unary operator, as illustrated by the following if
statement:

if (.prime. b .and. b > 100) then

The name of an operator must consist of letters only, surrounded by periods, and it must not be the same
as any built-in operator (==, .not., .neqv., ...). The precedence of a defined binary operator is
always lower than all other operators, and the precedence of a defined unary operator is always higher
than all other operators.

Learn more about defining new operators.

Previous slide Next slide

newoperators2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld027.htm [4/12/2000 3:48:51 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/newop.html

Extending Intrinsic Functions

module integer_sqrt

 ! Extended to return the truncated
 ! integer square root of an integer

 implicit none
 private

 interface sqrt
 module procedure sqrt_int
 end interface
 public sqrt

contains

Previous slide Next slide

intrinsics1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld028.htm [4/12/2000 3:48:51 PM]

function sqrt_int (i) &
 result (sqrt_int_result)

 integer :: sqrt_int_result
 integer, intent (in) :: i

 sqrt_int_result = int (sqrt (real (i) + 0.5))

end function sqrt_int

end module integer_sqrt

Previous slide Next slide

intrinsics2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld029.htm [4/12/2000 3:48:51 PM]

A Module for Big Integers
We are interested in adding, multiplying, and dividing very large integers, possibly with hundreds of
digits. This can be done by creating a new data type, called big_integer, deciding which operations
are needed, and writing procedures that will perform the operations on values of this type. All of this will
be placed in a module called big_integers so that it can be used by many programs.

Previous slide Next slide

bigint0

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld030.htm [4/12/2000 3:48:52 PM]

To make it easier to conceptualize with simple examples, we will store one decimal digit in each element
of a Fortran array of integers.

integer, parameter :: nr_of_digits = 100

type, public :: big_integer
 private
 integer, dimension (0 : nr_of_digits) :: &
 digit
end type big_integer

Previous slide Next slide

bigint1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld031.htm [4/12/2000 3:48:52 PM]

The array digit has 101 elements. digit(0) holds the units digit; digit(1) holds the tens digit;
digit(2) holds the hundreds digit; The extra element in the array is used to check for overflow--if
any value other than zero gets put into the largest element, that will be considered to exceed the largest
big_integer value and the program will halt with an error. The private statement indicates that
we don't want anybody that uses the module to be able to access the component digit of a variable of
type big_integer; we will provide all of the operations necessary to compute with such values.

Previous slide Next slide

bigint2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld032.htm [4/12/2000 3:48:52 PM]

The first necessary operations assign values to a big integer and print the value of a big integer. This
subroutine print_big does not have a use statement because it will be inside the module
big_integers and will have access to all the data and procedures in the module.

Previous slide Next slide

bigint3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld033.htm [4/12/2000 3:48:52 PM]

subroutine print_big (b)

 type (big_integer), intent (in) :: b
 integer :: n

 ! Find first significant digit
 do n = nr_of_digits, 1, -1
 if (b % digit (n) /= 0) exit
 end do

 print "(999i1)", b % digit (n:0:-1)

end subroutine print_big

Previous slide Next slide

bigint4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld034.htm [4/12/2000 3:48:52 PM]

To be able to assign values to big_integers consisting of large integer values, one possibility is to
write the integer as a character string consisting of only digits 0-9 (we are not allowing negative
numbers). If c contains a character other than one of the digits, the program halts with an error.

Previous slide Next slide

bigint5

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld035.htm [4/12/2000 3:48:52 PM]

subroutine big_gets_char (b, c)

 type (big_integer), intent (out) :: b
 character (len = *), intent (in) :: c
 integer :: n, i

 if (len (c) > nr_of_digits) then
 b = huge (b)
 return
 end if

Previous slide Next slide

bigint6

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld036.htm [4/12/2000 3:48:52 PM]

 b % digit = 0
 n = 0
 do i = len (c), 1, -1
 b % digit (n) = &
 index ("0123456789", c (i:i)) - 1
 if (b % digit (n) == -1) then
 b = huge (b)
 return
 end if
 n = n + 1
 end do

end subroutine big_gets_char

Previous slide Next slide

bigint7

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld037.htm [4/12/2000 3:48:53 PM]

Putting the Procedures in a Module
A module using what we have created so far follows. We also need to extend the intrinsic function huge
to apply to big integers. This is done later.

module big_integers

 implicit none
 private
 integer, parameter :: nr_of_digits = 100

 type, public :: big_integer
 private
 integer, dimension (0 : nr_of_digits) :: &
 digit
 end type big_integer

 interface huge
 module procedure huge_big
 end interface
 public huge

Previous slide Next slide

bigint8

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld038.htm [4/12/2000 3:48:53 PM]

contains

subroutine print_big (b)

 type (big_integer), intent (in) :: b
 integer :: n

 ! Find first significant digit
 do n = nr_of_digits, 1, -1
 if (b % digit (n) /= 0) exit
 end do

 print "(999i1)", b % digit (n:0:-1)

end subroutine print_big

Previous slide Next slide

bigint9

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld039.htm [4/12/2000 3:48:53 PM]

subroutine big_gets_char (b, c)

 type (big_integer), intent (out) :: b
 character (len = *), intent (in) :: c
 integer :: n, i

 if (len (c) > nr_of_digits) then
 b = huge (b)
 return
 end if

Previous slide Next slide

bigint10

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld040.htm [4/12/2000 3:48:53 PM]

 b % digit = 0
 n = 0
 do i = len (c), 1, -1
 b % digit (n) = &
 index ("0123456789", c (i:i)) - 1
 if (b % digit (n) == -1) then
 b = huge (b)
 return
 end if
 n = n + 1
 end do

end subroutine big_gets_char

function huge (b) result (huge_result)
 type (big_integer), intent (in) :: b
 . . .
end function huge

end module big_integers

Previous slide Next slide

bigint11

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld041.htm [4/12/2000 3:48:53 PM]

With the module available, we can write a simple program to test out the assignment and printing
routines for big integers.

program test_big_1

 use big_integers
 implicit none
 type (big_integer) :: b1

Previous slide Next slide

testbig11

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld042.htm [4/12/2000 3:48:53 PM]

 call big_gets_char &
 (b1, "71234567890987654321")
 call print_big (b1)

 call big_gets_char (b1, "")
 call print_big (b1)

 call big_gets_char &
 (b1, "123456789+987654321")
 call print_big (b1)

end program test_big_1

run test_big_1

71234567890987654321

0

999999999999999999 . . .

Previous slide Next slide

testbig12

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld043.htm [4/12/2000 3:48:54 PM]

Assigning Big Integers
It is possible to use the assignment statement to do the conversion from character to big integer. Here is
what the interface block must look like in this case.

interface assignment (=)
 module procedure big_gets_char
end interface
public assignment (=)

Now any user of the module can use the assignment statement instead of calling a subroutine, which
makes the program a lot easier to understand.

Previous slide Next slide

assignbig

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld044.htm [4/12/2000 3:48:54 PM]

program test_big_2

 use big_integers
 implicit none
 type (big_integer) :: b1

 b1 = "71234567890987654321"
 call print_big (b1)
 print *
 b1 = ""
 call print_big (b1)
 print *
 b1 = "123456789+987654321"
 call print_big (b1)

end program test_big_2

Previous slide Next slide

testbig2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld045.htm [4/12/2000 3:48:54 PM]

With conversion from character strings to big integers available using the assignment statement, there is
no need to have the subroutine big_gets_char available. This can be done by putting the private
statement in the module to make the default accessiblity private and put the following public
statement in the module.

public assignment (=)

The effect of this private statement is different from that of the private statement that occurs
within the definition of the type big_integer. This one makes everything except those with the
public attribute inaccessible outside the module, whereas the private statement in the type
statement makes only the components of the type inaccessible outside the module. Both the type
definition and the procedure are accessible inside the module.

Previous slide Next slide

bigint12

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld046.htm [4/12/2000 3:48:54 PM]

Extending Intrinsic Functions to Big Integers
The intrinsic function huge can be extended so that when given a big integer as argument, it returns the
largest possible big integer.

Previous slide Next slide

bigintrinsics1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld047.htm [4/12/2000 3:48:54 PM]

function huge_big (b) result (huge_big_result)

 type (big_integer) :: huge_big_result
 type (big_integer), intent (in) :: b

 huge_big_result % digit &
 (0 : nr_of_digits - 1) = 9
 huge_big_result % digit (nr_of_digits) = 0

end function huge_big

Previous slide Next slide

bigintrinsics2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld048.htm [4/12/2000 3:48:55 PM]

This function is tested by the program test_big_5.

program test_big_5

 use big_integers
 implicit none
 type (big_integer) :: b

 print *, huge (b)

end program test_big_5

which produces the output

99999999999999999999999999 . . .

There is not room enough on one line to show all 100 9s in the answer.

Previous slide Next slide

testbig5

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld049.htm [4/12/2000 3:48:55 PM]

Adding Big Integers
Adding big integers can be done with a function that does just what we do with pencil and paper, adding
two digits at a time and keeping track of any carry, starting with the rightmost digits. The function
big_plus_big does this.

function big_plus_big (x, y) &
 result (big_plus_big_result)

 type (big_integer) :: big_plus_big_result
 type (big_integer), intent (in) :: x, y
 integer :: carry, temp_sum, n

Previous slide Next slide

addbig1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld050.htm [4/12/2000 3:48:55 PM]

 carry = 0
 do n = 0, nr_of_digits
 temp_sum = &
 x % digit (n) + y % digit (n) + carry
 big_plus_big_result % digit (n) = &
 modulo (temp_sum, 10)
 carry = temp_sum / 10
 end do

 if (big_plus_big_result % digit (nr_of_digits) &
 /= 0 .or. carry /= 0) then
 big_plus_big_result = huge (x)
 end if

end function big_plus_big

Previous slide Next slide

addbig2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld051.htm [4/12/2000 3:48:55 PM]

In mathematics, the symbols + and - are used to add and subtract integers. It is possible to extend the
generic properties of the operations already built into Fortran.

interface operator (+)
 module procedure big_plus_big
end interface
public operator (+)

Previous slide Next slide

bigint13

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld052.htm [4/12/2000 3:48:55 PM]

The use of the plus operator to add two big integers is tested by the program test_big_3.

program test_big_3

 use big_integers
 implicit none
 type (big_integer) :: b1, b2

 b1 = "1234567890987654321"
 b2 = "9876543210123456789"
 call print_big (b1 + b2)

end program test_big_3

run test_big_3

11111111101111111110

Previous slide Next slide

testbig3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld053.htm [4/12/2000 3:48:55 PM]

It is not possible to use the expression b + i in a program where b is a big integer and i is an ordinary
integer. To do that, we must write another function and add its name to the list of functions in the
interface block for the plus operator. Similarly, it would be necessary to write a third function to handle
the case i + b. Even if that is not done, the number 999 could be added to b using the statements

temp_big_integer = "999"
 b = b + temp_big_integer

Previous slide Next slide

bigint14

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld054.htm [4/12/2000 3:48:56 PM]

Precedence of Extended Operators
Similar interface blocks and functions can be written to make the other operations utilize symbols, such
as - and *. The precedence of the extended operators when used to compute with big integers is the same
as when they are used to add ordinary integers. This holds true for all built-in operators that are extended.
This is illustrated by the following program that tests the extended multiplication operator (the function
is not shown). By looking at the last digit of the answer, it is possible to see that the multiplication is
done before the addition.

Previous slide Next slide

precedence

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld055.htm [4/12/2000 3:48:56 PM]

program test_big_4

 use big_integers
 implicit none
 type (big_integer) :: a, b, c

 a = "1"
 b = "9999999999999999999"
 c = "9999999999999999999"
 call print_big (a + b * c)

end program test_big_4

run test_big_4

99999999999999999980000000000000000002

Previous slide Next slide

testbig4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld056.htm [4/12/2000 3:48:56 PM]

Raising a Big Integer to an Integer Power
Exponentiation has both an iterative definition and a recursive definition. They are

xn = x x x x ... n times

and

x0 = 1
xn = x xn-1 for n > 1

Previous slide Next slide

power1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld057.htm [4/12/2000 3:48:56 PM]

Since Fortran has an exponentiation operator (**) for real numbers, it is not necessary to write a
procedure to do that. However, it may be necessary to write an exponentiation procedure for a new data
type, such as our big integers. We suppose that the multiply operator (*) has been extended to form the
product of two big integers. The task is to write a procedure for the module that will raise a big integer to
a power that is an ordinary integer. This time, the simple iterative procedure is presented first.

Previous slide Next slide

power2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld058.htm [4/12/2000 3:48:56 PM]

function big_power_int (b, i) &
 result (big_power_int_result)

 type (big_integer) :: big_power_int_result
 type (big_integer), intent (in) :: b
 integer, intent (in) :: i
 integer :: n

 big_power_int_result = "1"
 do n = 1, i
 big_power_int_result = &
 big_power_int_result * b
 end do

end function big_power_int

Previous slide Next slide

bigpowerint

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld059.htm [4/12/2000 3:48:56 PM]

A recursive definition that leads to a more efficient algorithm is:

x0 = 1
xn = (xn/2)2 for n even, n > 0
xn = x(xn/2)2 for n odd, n > 0

where / indicates integer division.

Previous slide Next slide

recbigpower

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld060.htm [4/12/2000 3:48:57 PM]

recursive function big_power_int (b, i) &
 result (big_power_int_result)

 type (big_integer) :: big_power_int_result
 type (big_integer), intent (in) :: b
 integer, intent (in) :: i
 type (big_integer) :: temp_big

 if (i <= 0) then
 big_power_int_result = "1"
 else

Previous slide Next slide

fnrecbigpower1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld061.htm [4/12/2000 3:48:57 PM]

 temp_big = big_power_int (b, i / 2)
 if (modulo (i, 2) == 0) then
 big_power_int_result = &
 temp_big * temp_big
 else
 big_power_int_result = &
 temp_big * temp_big * b
 end if
 end if

end function big_power_int

Learn more about recursion.

Previous slide Next slide

fnrecbigpower2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld062.htm [4/12/2000 3:48:57 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/recursion.html

Exercises
Extend the the equality operator (==) and the less than (<) operator to compare two big integers.
Test these operators.

1.

Extend the equality operator (==) to compare a big integer with a character string consisting of
digits. Hint: use extended assignment to assign the character string to a temporary big integer, then
use the extended equality operator from Exercise 1 to do the comparison.

2.

Extend the multiplication operator (*) to two big integers.3.

Extend the subtraction operator (-) so that it performs ``positive'' subtraction. If the difference is
negative, the result should be 0.

Previous slide Next slide

4.

ex2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld063.htm [4/12/2000 3:48:57 PM]

5. The representation of big integers used in this section is very inefficient because only one decimal
digit is stored in each Fortran integer array element. It is possible to store a number as large as possible,
but not so large that when two are multiplied, there is no overflow. This largest value can be determined
portably on any system with the statements:

integer, private, parameter :: &
 d = (range (0) - 1) / 2, &
 base = 10 ** d

! Base of number system is 10 ** d,
! so that each "digit" is 0 to 10**d - 1

Modify the module big_integers to use this representation.

6. Compute 100!

Previous slide Next slide

ex2b

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld064.htm [4/12/2000 3:48:57 PM]

7. Project: Write a module to do computation with rational numbers. The rational numbers should be
represented as a structure with two integers, the numerator and the denominator. Provide assignment,
some input/output, and some of the usual arithmetic operators. 8. Modify the module in the previous
exercise to use big_integers for the numerator and denominator. 9. Project: Write a module to
manipulate big decimal numbers such as

28447305830139375750302.3742912561209239123

using the big_integer module as a model.

Previous slide

ex2c

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod7/slides/tsld065.htm [4/12/2000 3:48:57 PM]

	hpc.mil
	Modules
	form
	use
	m
	p
	only
	private
	public
	compiling1
	compiling2
	integration
	fmod
	integrate
	generic1
	generic2
	testswap
	external
	testextswap
	assignment1
	assignment2
	testintlogical
	ex1
	operators1
	operators2
	testlogicalplus
	newoperators1
	newoperators2
	intrinsics1
	intrinsics2
	bigint0
	bigint1
	bigint2
	bigint3
	bigint4
	bigint5
	bigint6
	bigint7
	bigint8
	bigint9
	bigint10
	bigint11
	testbig11
	testbig12
	assignbig
	testbig2
	bigint12
	bigintrinsics1
	bigintrinsics2
	testbig5
	addbig1
	addbig2
	bigint13
	testbig3
	bigint14
	precedence
	testbig4
	power1
	power2
	bigpowerint
	recbigpower
	fnrecbigpower1
	fnrecbigpower2
	ex2
	ex2b
	ex2c

